SYSTÈME D’ÉTUDE : TENDEUR DE COURROIE

1- Présentation :
Le dessin d’ensemble et les schémas suivants représentent le mécanisme d’un tendeur de courroie utilisé dans une transmission de puissance entre deux arbres.
Le galet (9) est en liaison pivot avec l’arbre fixe (10) encastré avec la tige (2); cette dernière est réglable en position et liée complètement avec le support (1).

<table>
<thead>
<tr>
<th>Rep</th>
<th>Nb</th>
<th>Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>Joint à lèvres</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Clavette</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Vis</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Rondelle</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Tige</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rep</th>
<th>Nb</th>
<th>Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>Anneau élastique</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Axe</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Galet</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Roulement</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Vis</td>
</tr>
</tbody>
</table>

TENDEUR DE COURROIE
Au cours du fonctionnement, le brin mou de la courroie exerce une action mécanique sur le galet. Cette action se répartie de façon identique sur chacun des deux roulements assurant le guidage de ce galet par rapport à l’arbre (10).

L'étude porte sur l'axe (10) : qui est supposé sollicité uniquement à la flexion plane simple.

Objectif : Vérifier la résistance de l’axe (10) à la flexion.

2- Etude de la flexion de l’axe (10) :

2-1 Modélisation :

L’axe (10) est assimilé à une poutre cylindrique pleine encastrée à une extrémité modélisée comme suit.

On donne :
\[||F_B|| = ||F_C|| = 500 \text{ N} ; \]

On note :
\[F_B = F_{(9 \rightarrow 10)} \text{ en } B \]
\[F_C = F_{(9 \rightarrow 10)} \text{ en } C \]

Diamètre minimal \(d = 15 \text{ mm} \) ;
La résistance élastique
\[Re = 495 \text{ N/mm}^2 ; \]
Le coefficient de sécurité \(s = 3. \)

2-2 Etude statique :

Equilibre de l’axe (10) :
Déterminer les actions mécaniques au niveau de l’encastrement en A :
\(R_A \) et \(M_A \)

2-3 Tracer le diagramme des efforts tranchants le long de la poutre :

Echelle : \(1 \text{ mm} \rightarrow 50 \text{ N} \)

Efforts tranchants :

219
2-4 Tracer le diagramme des moments fléchissants le long de la poutre :

Moments fléchissants :

Echelle : 1mm → 2N.m

2-5 Calculer la contrainte normale maximale.

2-6 Vérifier la condition de résistance en flexion de l’axe (10).

3- Résolution du même problème par l’utilisation du logiciel "Poutre 2D"

3-1 Logiciel sous Dos :

3-1-1 Chargement du logiciel :
 a- Mettre l'ordinateur en marche.
 b- Charger le logiciel "poutre 2D".
 L'écran graphique du logiciel apparaît.
 Donner un nom à la structure puis valider en tapant O.

3-1-2 Choix de l'unité :
 Valider dans le menu principal l'option "Acquisition" puis "Unités".
 Choisir pour unité de longueur le "mm".
3-1-3 Création des nœuds :
 Dans le menu "Acquisition", choisir "Nœuds" puis valider "Créer".
 Entrer successivement les coordonnées (0,0), (28,0) et (58,0) correspondant respectivement aux points A, B et C de la poutre; pour poutre 2D, ces points sont définis par 1, 2 et 3.
 Quitter avec la touche Echap
 Pour améliorer l'affichage des nœuds et pour centrer la structure, valider "Zoom" puis "Tout".

3-1-4 Choix du matériau :
 Dans le menu "Acquisition", choisir "Poutres".
 Valider l'option "matériaux" et modifier les valeurs proposées par défaut :
 E(Young) = 200 000 N/mm². Rp = 132 N/mm².
 Sortir avec "Quitter"

3-1-5 Choix de la section :
 Dans le sous menu "Poutres" :
 Valider l'option "Sections" puis "Ch_Sec_C" (changement de la section courante).
 Valider "Tube", puis entrer les valeurs du Ø ext et du Øint.
 Sortir par la suite avec "Quitter".

3-1-6 Création de la poutre :
 Dans le sous menu "Poutres", valider "Créer" :
 Entrer au clavier les numéros des nœuds pour créer les poutres reliant les nœuds n°1 et 2 puis les nœuds n°2 et 3.
 Utiliser Echap puis "Quitter".

3-1-7 Création des charges concentrées :
 Dans le menu "Acquisition", valider "ChargesC" puis "CH-Charge-C" pour acquérir la valeur de la charge concentrée
 \[|F| = 500 \text{ N} \]
 Sortir de ce menu en validant "Quitter".
 Valider "Créer" et définir successivement la position de la force aux nœuds 2 puis 3.
 Sortir avec "Quitter".

3-1-8 Création de l'encastrement :
 Dans le menu "Acquisition", valider "Appuis " puis "Créer" et définir au nœud 1 un encastrement.
 Utiliser Echap puis "Quitter".

3-1-9 Calcul :
 Retourner au menu principal et valider l'option "Calcul".
 La phase d'analyse et de calcul de la structure se déroule sans l'intervention de l'utilisateur.
3-1-10 Résultats :
Valider l'option "Résultats graphiques" pour chacune des trois rubriques suivantes :
- Effort tranchant;
- Moment fléchissant;
- Contrainte normale σ.

a- Relever les valeurs

| $\|T_y\|_{\text{Maxi}}$ | .. |
| $\|M_f\|_{\text{Maxi}}$ | .. |
| $\|\sigma\|_{\text{Maxi}}$ | .. |

b- Comparer les valeurs retrouvées avec celles calculées analytiquement.

………
………..

b- Imprimer si c'est possible les résultats trouvés.

3-2 Logiciel sous windows :
3-2-1 Chargement du logiciel :

a- Mettre l'ordinateur en marche et patienter jusqu'à ce que le bureau s'affiche sur l'écran.

b- Charger le logiciel "Poutre 2d" en double cliquant sur l'icône et patienter jusqu'à l'apparition de l'écran graphique.

3-2-2 Choix de la section de la poutre :
- Dans l'onglet "Section", cliquer sur le bouton "Dessin"

- Choisir l'outil "cercle" et faire un cercle de rayon 7.5.

- Utiliser l'outil "Zoom" puis "Zoom plus grand" pour agrandir l'échelle de l'affichage.
- Cliquer dans l'onglet "Section", sur le bouton "Propriétés".
- Cliquer sur le bouton "Hachurage de la section".
- Choisir l'option "principal" du repère.
- Régler la valeur de l'angle à zéro pour coincider l'axe x de la poutre avec celui de xg, puis cliquer sur le bouton "Ajuster".
- Pour ajouter la section à la liste dans la base des données, cliquer sur le bouton "B.D".

- Cliquer sur le bouton "Ajouter une section".
- Cliquer ensuite sur le bouton "Accepter" et confirmer la sauvegarde.

- Calculer d'abord la section S et les valeurs Igz, I/v puis les faire entrer dans leur champ.

<table>
<thead>
<tr>
<th>Réf.</th>
<th>S (mm²)</th>
<th>Igz (mm⁴)</th>
<th>I/v (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rond 15</td>
<td>176.71</td>
<td>2485.05</td>
<td>331.34</td>
</tr>
</tbody>
</table>

- Cliquer sur le champ "Rond 15" puis cliquer sur le bouton "Ajouter une section".
- Cliquer ensuite sur le bouton "Accepter" et confirmer la sauvegarde.

- Dans l'onglet "Structure", cliquer sur le bouton "définition des poutres".

- Cliquer sur l'onglet "Choix de la section courante".
- Dans la fenêtre "Section", double cliquer sur Rond 15.

3-2-3 Choix du matériau :

Cliquer sur l'onglet "Choix du matériau courant" et choisir l'équivalent du «XC 38» ayant une résistance de 495 N/mm².

3-2-4 Création de la poutre :

a- Toujours, dans l'onglet "Structure", cliquer sur le bouton "Poutre".

b- Avec la souris, cliquer dans l'un des deux champs "Coord" (situés en haut et à gauche de l'écran); en conséquence, on obtient en bas de l'écran, à droite les champs des coordonnées des nœuds à définir.

c- Taper successivement les valeurs des coordonnées des nœuds pour créer les deux poutres 1 et 2 correspondant aux portions AB et BC de l'axe.
3-2-5 Création de l'encastrement :

a- Toujours, dans l'onglet "Structure", cliquer sur le bouton "Déf. des appuis".

b- Choisir "appui encastrement" ; cliquer ensuite avec la souris sur le nœud A puis valider avec la touche "Entrée".

3-2-6 Création des charges concentrées :

a- Toujours, dans l'onglet "Structure", cliquer sur le bouton "Déf. des efforts localisés".

b- Définir les valeurs des coordonnées de la charge localisée dans les champs correspondants puis cliquer avec la souris sur le nœud concerné et valider la création avec le bouton.

3-2-7 Calcul de la structure :
Cliquez sur l'onglet "calcul" puis cliquer "Exécuter".

3-2-8 Visualisation des résultats :

a- Cliquer sur l'onglet "Résultats".

b- Cliquer sur le bouton "Composantes de la sollicitation"
Cliquez par la suite sur le bouton correspondant pour afficher et relever les valeurs de :
- Effort tranchant ;
- Moment fléchissant ;
- Contrainte normale \(\sigma \).

\[
\|\vec{F}_{\text{Maxi}}\| = \text{.........................}
\]
\[
\|\vec{M}_{\text{Maxi}}\| = \text{.........................}
\]
\[
\|\sigma_{\text{Maxi}}\| = \text{.........................}
\]

c- Comparer les valeurs retrouvées avec celles calculées analytiquement.

……...

………

d- Imprimer si c'est possible les résultats trouvés.